martes, 19 de julio de 2016

Campo Gravitatorio

Campo Gravitatorio





En física el campo gravitatorio o campo gravitacional es un campo de fuerzas que representa la fuerza gravitatoria. El tratamiento que recibe este campo es diferente según las necesidades del problema:
En física clásica o física no-relativista el campo gravitatorio viene dado por un campo vectorial.

En física newtoniana, el campo gravitatorio es un campo vectorial conservativo cuyas líneas de campo son abiertas. Puede definirse como la fuerza por unidad de masa que experimentará una partícula puntual situada ante la presencia de una distribución de masa. Sus unidades son, por lo tanto, las de una aceleración, m s-2. Matemáticamente se puede definir el campo como


Campo gravitatorio en física newtoniana

 En física newtoniana, el campo gravitatorio es un campo vectorial conservativo cuyas líneas de campo son abiertas. Puede definirse como la fuerza por unidad de masa que experimentará una partícula puntual situada ante la presencia de una distribución de masa. Sus unidades son, por lo tanto, masa por aceleración, aunque se suele utilizar fuerza por unidad de masa -que es equivalente-. Matemáticamente el campo gravitatorio g → {\displaystyle {\vec {g}}} producido por una distribución de masas cualquiera se define como: g → = lim m → 0 F → m {\displaystyle {\vec {g}}=\lim _{m\to 0}{\frac {\vec {F}}{m}}} 

donde:
m es una masa de prueba
F → {\displaystyle {\vec {F}}}  es la fuerza gravitatoria entre la distribución de masas y la masa de prueba

Líneas de fuerza

Una línea de fuerza o línea de flujo, normalmente en el contexto del electromagnetismo, es la curva cuya tangente proporciona la dirección del campo en ese punto. Como resultado, también es perpendicular a las líneas equipotenciales en la dirección convencional de mayor a menor potencial. Suponen una forma útil de esquematizar gráficamente un campo, aunque son imaginarias y no tienen presencia física.
 
Potencial gravitatorio

 
La naturaleza conservativa del campo permite definir una magnitud, que se podría llamar energía mecánica, tal que la suma de la energía potencial y energía cinética del sistema es una cantidad constante. Esto implica que el trabajo realizado en el seno de un campo gravitatorio dependerá sólo de las posiciones final e inicial, y no de la trayectoria seguida (así, el trabajo realizado a lo largo de una superficie cerrada será nulo). Así a cada punto del espacio se le puede asignar un potencial Φ gravitatorio relacionado con la densidad de la distribución de masa y con el vector de campo gravitatorio 



Campo gravitatorio en física relativista



En la teoría de la relatividad general el campo gravitatorio no se describe como un campo de fuerzas, sino que las trayectorias curvas que los cuerpos siguen en el espacio tridimensional, son sólo un reflejo de que el espacio-tiempo es curvo. De acuerdo con la teoría de la relatividad general, una partícula puntual en caída libre en un campo gravitatorio está siguiendo una línea de mínima curvatura, llamada geodésica, sobre un espacio-tiempo curvo. Por tanto, la curvatura de las trayectorias tridimensionales se debe a que la línea más recta posible en el espacio-tiempo de cuatro dimensiones no se proyecta como una recta, vista desde el espacio tridimensional.

El campo gravitatorio se interpreta en relatividad como la curvatura del espacio-tiempo que, en presencia de materia, deja de ser plano. Allí donde el espacio-tiempo no es plano, se percibe ese hecho como campo gravitatorio local, y viceversa, allí donde se percibe campo gravitatorio se tiene una geometría curva del espacio-tiempo. Así, la teoría relativista de Einstein del campo gravitatorio es una teoría de la estructura geométrica local del espacio-tiempo. En esta teoría el tensor de curvatura de Ricci está asociado al tensor de energía-momento de la materia:

R i k − 1 2 g i k R = 8 π G c 4 T i k {\displaystyle R_{ik}-{1 \over 2}g_{ik}R={8\pi G \over c^{4}}T_{ik}} 

No hay comentarios:

Publicar un comentario